Construction




Manufacturingedit

Since the International Space Station is a multi-national collaborative project, the components for in-orbit assembly were manufactured in various countries around the world. Beginning in the mid 1990s, the U.S. components Destiny, Unity, the Integrated Truss Structure, and the solar arrays were fabricated at the Marshall Space Flight Center and the Michoud Assembly Facility. These modules were delivered to the Operations and Checkout Building and the Space Station Processing Facility (SSPF) for final assembly and processing for launch.

The Russian modules, including Zarya and Zvezda, were manufactured at the Khrunichev State Research and Production Space Center in Moscow. Zvezda was initially manufactured in 1985 as a component for Mir-2, but was never launched and instead became the ISS Service Module.

The European Space Agency Columbus module was manufactured at the EADS Astrium Space Transportation facilities in Bremen, Germany, along with many other contractors throughout Europe. The other ESA-built modules—Harmony, Tranquility, the Leonardo MPLM, and the Cupola—were initially manufactured at the Thales Alenia Space factory in Turin, Italy. The structural steel hulls of the modules were transported by aircraft to the Kennedy Space Center SSPF for launch processing.

The Japanese Experiment Module Kibō, was fabricated in various technology manufacturing facilities in Japan, at the NASDA (now JAXA) Tsukuba Space Center, and the Institute of Space and Astronautical Science. The Kibo module was transported by ship and flown by aircraft to the SSPF.

The Mobile Servicing System, consisting of the Canadarm2 and the Dextre grapple fixture, was manufactured at various factories in Canada (such as the David Florida Laboratory) and the United States, under contract by the Canadian Space Agency. The mobile base system, a connecting framework for Canadarm2 mounted on rails, was built by Northrop Grumman.

Assemblyedit

The assembly of the International Space Station, a major endeavour in space architecture, began in November 1998. Russian modules launched and docked robotically, with the exception of Rassvet. All other modules were delivered by the Space Shuttle, which required installation by ISS and Shuttle crewmembers using the Canadarm2 (SSRMS) and extra-vehicular activities (EVAs); as of 5 June 2011update, they had added 159 components during more than 1,000 hours of EVA. 127 of these spacewalks originated from the station, and the remaining 32 were launched from the airlocks of docked Space Shuttles. The beta angle of the station had to be considered at all times during construction.

The first module of the ISS, Zarya, was launched on 20 November 1998 on an autonomous Russian Proton rocket. It provided propulsion, attitude control, communications, electrical power, but lacked long-term life support functions. Two weeks later, a passive NASA module Unity was launched aboard Space Shuttle flight STS-88 and attached to Zarya by astronauts during EVAs. This module has two Pressurised Mating Adapters (PMAs), one connects permanently to Zarya, the other allowed the Space Shuttle to dock to the space station. At that time, the Russian station Mir was still inhabited, and the ISS remained uncrewed for two years. On 12 July 2000, Zvezda was launched into orbit. Preprogrammed commands on board deployed its solar arrays and communications antenna. It then became the passive target for a rendezvous with Zarya and Unity: it maintained a station-keeping orbit while the Zarya-Unity vehicle performed the rendezvous and docking via ground control and the Russian automated rendezvous and docking system. Zarya's computer transferred control of the station to Zvezda's computer soon after docking. Zvezda added sleeping quarters, a toilet, kitchen, CO2 scrubbers, dehumidifier, oxygen generators, exercise equipment, plus data, voice and television communications with mission control. This enabled permanent habitation of the station.

The first resident crew, Expedition 1, arrived in November 2000 on Soyuz TM-31. At the end of the first day on the station, astronaut Bill Shepherd requested the use of the radio call sign "Alpha", which he and cosmonaut Krikalev preferred to the more cumbersome "International Space Station". The name "Alpha" had previously been used for the station in the early 1990s, and its use was authorised for the whole of Expedition 1. Shepherd had been advocating the use of a new name to project managers for some time. Referencing a naval tradition in a pre-launch news conference he had said: "For thousands of years, humans have been going to sea in ships. People have designed and built these vessels, launched them with a good feeling that a name will bring good fortune to the crew and success to their voyage." Yuri Semenov, the President of Russian Space Corporation Energia at the time, disapproved of the name "Alpha" as he felt that Mir was the first modular space station, so the names "Beta" or "Mir 2" for the ISS would have been more fitting.

Expedition 1 arrived midway between the flights of STS-92 and STS-97. These two Space Shuttle flights each added segments of the station's Integrated Truss Structure, which provided the station with Ku-band communication for US television, additional attitude support needed for the additional mass of the USOS, and substantial solar arrays supplementing the station's four existing solar arrays.

Over the next two years, the station continued to expand. A Soyuz-U rocket delivered the Pirs docking compartment. The Space Shuttles Discovery, Atlantis, and Endeavour delivered the Destiny laboratory and Quest airlock, in addition to the station's main robot arm, the Canadarm2, and several more segments of the Integrated Truss Structure.

The expansion schedule was interrupted by the Space Shuttle Columbia disaster in 2003 and a resulting hiatus in flights. The Space Shuttle was grounded until 2005 with STS-114 flown by Discovery.

Assembly resumed in 2006 with the arrival of STS-115 with Atlantis, which delivered the station's second set of solar arrays. Several more truss segments and a third set of arrays were delivered on STS-116, STS-117, and STS-118. As a result of the major expansion of the station's power-generating capabilities, more pressurised modules could be accommodated, and the Harmony node and Columbus European laboratory were added. These were soon followed by the first two components of Kibō. In March 2009, STS-119 completed the Integrated Truss Structure with the installation of the fourth and final set of solar arrays. The final section of Kibō was delivered in July 2009 on STS-127, followed by the Russian Poisk module. The third node, Tranquility, was delivered in February 2010 during STS-130 by the Space Shuttle Endeavour, alongside the Cupola, followed in May 2010 by the penultimate Russian module, Rassvet. Rassvet was delivered by Space Shuttle Atlantis on STS-132 in exchange for the Russian Proton delivery of the US-funded Zarya module in 1998. The last pressurised module of the USOS, Leonardo, was brought to the station in February 2011 on the final flight of Discovery, STS-133. The Alpha Magnetic Spectrometer was delivered by Endeavour on STS-134 the same year.

As of June 2011update, the station consisted of 15 pressurised modules and the Integrated Truss Structure. Five modules are still to be launched, including the Nauka with the European Robotic Arm, the Prichal module, and two power modules called NEM-1 and NEM-2. As of May 2020update, Russia's future primary research module Nauka is set to launch in the spring of 2021, along with the European Robotic Arm which will be able to relocate itself to different parts of the Russian modules of the station.

The gross mass of the station changes over time. The total launch mass of the modules on orbit is about 417,289 kg (919,965 lb) (as of 3 September 2011update). The mass of experiments, spare parts, personal effects, crew, foodstuff, clothing, propellants, water supplies, gas supplies, docked spacecraft, and other items add to the total mass of the station. Hydrogen gas is constantly vented overboard by the oxygen generators.

Comments

Popular posts from this blog

Structure

Purpose

Onboard systems